ECGR4143/5195 Electric Machines and Drives

Catalog Course Description

Theory of transformers and rotating machines; harmonic and saturation effects on machine performance. Unbalanced operation and transient conditions.

Class Topics

- 1. Understand electrical circuit modeling
- 2. Determining torque and force in machines using energy and co-energy.
- 3. Understanding of saturation
- 4. Understanding of reluctance machines
- 5. Understanding of space harmonics in rotating machines
- 6. Understanding of synchronous, induction and DC machines
- 7. Variable frequency operation of induction and synchronous machines
- 8. Introductory understanding of machine dynamics
- 9. Understanding of the use of machines in a power system
- 10. Inverter operation and modeling
- 11. Adjustable speed and torque drives

Course Objective

The objective of this course is for senior-level students to learn advanced topics in electrical machinery and electromechanical energy conversion.

Course Lecturer

Jonathan Bird	Lecture Room:	EPIC 2230
Tel: 704-687-8595 Email: j.bird@uncc.edu	Lecture Time:	Tuesday and Thursday, 3:30-4:45pm
Office fiburs. Wednesday 2-4pin (of just stop by)	onnee.	LI IC 2100

Teaching Assistant's Office Hours

No teaching assistant

Course Prerequisite

ECGR 3142 Electromagnetic Devices with a grade of C or better

Course Textbook

Fitzgerald A. E., Kingsley C., Umans S. D., *Electric Machinery*, 5th Edition or 6th Edition, McGraw-Hill.

Suggested Reference Textbooks

Chapman S. J., *Electric Machinery Fundamentals*, 3rd Edition or later, McGraw-Hill Guru B. S., Hiziroğlu H. R. *Electric Machinery and Transformers*, 3rd Edition, Oxford University Press, 2000 Sarma M. S. *Electric Machines: Steady-State Theory and Dynamic Performance*, 2nd Edition, CL Engineering, 1994

Grading

The final grade will be det	termined as follows:
Homework's	30%
Experimental Project(s)	20%
Test	20%
Final Exam	30%