ECGR3121 Introduction to Electromagnetic Fields

Course Lecturer

Jonathan Bird Tel: 704-687-8595 Email: j.bird@uncc.edu Official Office Hours: Wednesday 2-4pm Lecture Room:EPIC 2222Lecture Time:Monday and Wednesday, 9:30-10:45pmOffice:EPIC 2166

Course Recitation

Friday 12:30- 1:45, EPIC 2222.

Course Prerequisite

ECGR 2112 with a grade of C or better. Although it's not yet an official prerequisite, it would be best if you have already taken Math 2241 (Calculus 3).

Course Textbook

Nathan Ida, Engineering Electromagnetics, 2nd Edition, Springer, ISBN: 978-0-387-20156-6.

This syllabus includes a schedule of topics as we will discuss them. I strongly encourage you to read the material for a given lecture session prior to the session. Doing so will help you significantly in learning the material during class.

Reference Textbooks

D. K. Cheng, *Field and Wave Electromagnetics*, Addison-Wesley, 2nd Edition, 1989 D. J. Griffiths, *Introduction to Electrodynamics*, Prentice Hall, 3rd Edition, 1999

Grading

The final grade will be determined as follows:

Homework10%Test 1, Test 250%Final Exam40%

The final grades will never be worse than the following:

90% - 100%	А
80% - 89%	В
70% – 79%	С
60% - 69%	D
59% and below	F

at the end of the semester, I will likely adjust your final grades based on the class performance. Any final modification of your grades will only improve them and are non-negotiable.

Academic Dishonesty

All UNC Charlotte students have the responsibility to know, observe and enforce the requirements of *The UNC Charlotte Code of Student Academic Integrity* (<u>http://legal.uncc.edu/policies/up-407</u>). This Code forbids cheating, fabrication or falsification of information, multiple submissions of academic work, plagiarism, abuse of academic materials, and complicity in academic dishonesty. Also see http://integrity.uncc.edu.

Disability Services

It is University policy, on a flexible and individualized basis, to grant reasonable accommodations to students with disabilities that may affect their ability to participate in course activities or to meet course requirements. Students with disabilities are encouraged to contact their course instructor early in the semester to discuss their individual needs for accommodations. Please also provide a letter of accommodations from UNC Charlotte Disability Services (<u>http://www.ds.uncc.edu</u>).

Diversity Statement

Respect for cultural and human biological diversity are core concept at UNCC. In this course, each voice in the classroom has something of value to contribute to class discussion. Please respect the different experiences, beliefs and values expressed by your fellow students and instructor, and refrain from derogatory comments about other individuals, cultures, groups, or viewpoints. The Electrical and Computer Engineering Department supports the University of North Carolina at Charlotte's commitment to Diversity, and welcomes individuals of all ages, backgrounds, citizenships, disabilities, education, ethnicities, family statuses, genders, gender identities, geographical locations, languages, military experience, political views, races, religions, sexual orientations, socioeconomic statuses, and work experiences (See http://diversity.uncc.edu/).

Tentative Lecture Schedule

Date	Topics	Reading
18 Aug.	Vectors and Fields	pp. 25–49
	Introduction to Orthogonal Coordinates	
	Cartesian Coordinates Cylindrical Coordinates	
20 Aug.	Integrals of Vector Functions	pp. 58–85
	Gradient of a Scalar Field	
22 Aug.	Divergence of a Vector Field	
	Divergence Theorem Curl of a Vector Field, Stokes's Theorem	
25 Aug.	Vector Calculus Examples	
27 Aug.	Vector Identities	
	Helmholtz's Theorem Laplacian of a Scalar Field Classification	
	of Vector Fields	
29 Aug.	Fundamental Postulates of Electrostatics	рр. 126–132
	Coulomb's Law	pp. 173–177
1 Sep.	Labor Day, No lecture	pp. 1/c 1//
3 Sep.	Fundamental Postulates	
5 Sep.	Coulomb's Law: Discrete Charge	рр. 132–155
s sep.	Coulomb's Law: Continuous Charge	pp. 172–133 pp. 178–189
	Gauss' Law	pp. 170 109
8 Sep.	Electric Potential and Work	pp. 190–206
	Electrostatic Energy	pp. 244–259
10 Sep.	Coulomb's law, Gauss's Law, electric potential	pp: 211 239
10 Sep. 12 Sep.	Dielectrics in a Static Electric Field	pp. 206–223
12 Sep.	Electric Flux Density	pp. 200–223
15 Sep.	No lecture (ECCE Conference)	
17 Sep.	No lecture (ECCE Conference)	
	Electrostatic Boundary Conditions	pp. 223–244
19 Sep.	Conductors	pp. 223–244
	Capacitance	
22 5	Buffer	
22 Sep.	Current Density	pp. 417–431
24 Sep.	Ohm's Law	pp. 417–451
06 6	Continuity and KCL	pp. 431–441
26 Sep.	Joule's Law	
		pp. 447–452
2 0 G	Boundary Conditions on J , Resistance	
29 Sep.	Current, Ω 's law, BVP, Current and Ohm's law examples	
1 Oct.	Exam I	170 172
3 Oct.	Fundamental Postulates of Magnetostatics	pp. 470–473
	Magnetic Vector Potential	pp. 494–506
6 Oct.	Student Recess - No Class	
8 Oct.	Biot–Savart Law	pp. 474–484
10 Oct.	Continuity, J 's law, BC's on J , R	

Date	Topics	Reading
13 Oct.	Scalar Magnetic Potential	pp. 526–532
	Lorentz Force Law	pp. 604–607
	Torque	
15 Oct.	Faraday's Law of Induction	pp. 631–634
17 Oct.	Moving Conductor in a static Field	pp. 634–652
	Moving Conductor in a Time–Varying Field	
20 Oct.	No Lecture (Nags Head conference)	
22 Oct.	Magnetic Dipoles	pp. 507–508
	Magnetization	pp. 532–543
24 Oct.	Buffer	
27 Oct.	Magnetic Circuits	pp. 584–591
29 Oct.	Inductance	pp. 557–572
31 Oct.	Exam II	
3 Nov.	Magnetic Energy	pp. 572–584
5 Nov.	Forces on Magnetic Materials	pp. 591–604
	Forces on Currents	
7 Nov.	Maxwell's Equations	pp. 689–697
10 Nov.	Boundary value problems	pp. 290–311
	Method of Images	
	Images: Line Charge	
12 Nov.	Poisson's and Laplace's Equations	pp. 282–290
	Uniqueness	pp. 326–329
	Separation of Variables	
15 Nov.	Fourier Series	
17 Nov.	Cartesian Boundary Value Problems	pp. 329–334
19 Nov.	No lecture (DOT conference)	
21 Nov.	Images, Separation of Variables, Partial Differential Equations	
24 Nov.	Buffer	
26 Nov.	Thanksgiving break	
28 Nov.	Thanksgiving break	
1 Dec.	Buffer	
3 Dec.	Buffer – Last day of class	
10 Dec.	Final Exam (8:00–10:30) – <i>Double check date and time</i> .	