ECGR3142 Electromagnetic Devices

Course Description

Principles of operation and basic design features of electromechanical energy converters. Topics Include: The role of the magnetic field in transformers and electrical machines; Generation of induced voltages; Electromechanical torque development; Speed control; Circuit models and machine performance.

Course Objective

The purpose of this course is to prepare students for the analysis, operation, and control of electromechanical devices.

Course Lecturer

Jonathan Bird Office Hours: Thursday 2-5pm

Lecture Room: Woodward 125 Tel: 704-687-8595 Email: j.bird@uncc.edu Lecture Time: Monday and Wednesday, 2:00-3:15pm Office: WH-210F

Teaching Assistant Office Hours

Kiran Uppalapati, Tuesday 10-12 in Woodward 200, email: kuppalap@uncc.edu

Course Prerequisite

ECGR 3121 (Introduction to Electromagnetic Fields) with a grade of C or better

Course Textbook

Slemon G. R., *Electric Machines and Drives*, Addison-Wesley Publishing Company, Inc. 1992

Reference Textbooks

Guru B. S., Hiziroğlu H. R. Electric Machinery and Transformers, 3rd Edition, Oxford University Press, 2000 Chapman S. J., *Electric Machinery Fundamentals*, 3rd Edition, McGraw-Hill, 1998

Fitzgerald A. E., Kingsley C., Umans S. D., *Electric Machinery*, 5th Edition, McGraw-Hill, 1992

Sarma M. S. Electric Machines: Steady-State Theory and Dynamic Performance, 2nd Edition, CL Engineering, 1994

Class Topics

- Magnetic systems: equivalent magnetic and field circuits, alternating excitation, energy in magnetic fields, hysteresis, eddy currents, core losses.
- Transformers: ideal transformers, equivalent circuit of a transformer, ratings, per unit system, measurements of transformer parameters, transformer parameters.
- Basic principles of electric machines: forces on electric circuits, elementary rotating machines, ferromagnetic actuator, reluctance machines.
- Commutator machines: magnetic systems, rotor windings and commutator, torque and generated voltage, equivalent circuit, steady-state performance, motor operation, generator operation.
- Induction machines: sinusoidally distributed windings, rotating magnetic field, torque production, squirrel cage rotor, equivalent, machines with multiple poles, single phase motors
- Synchronous machines: cylindrical machines, steady state equivalent circuit, operation, starting and excitation of synchronous machines, permanent magnet synchronous machines.

Grading

The final grade will be determined as follows: Homework's 25% Project 10% Test 1, Test 2 35% Final Exam 30% Late homework can receive a maximum of 75%. No homework accepted after solutions have been released.